The Modern Google Data Stack

For any business in the 21st century, having a reliable data ecosystem and infrastructure is critical for making correct business decisions.

There is currently an industry shift of business moving from proprietary do-it-all-in-one tools to a data stack composed of modular components, with each component responsible for different steps in the data lifecycle.

In this blog article, we explore what a typical data lifecycle looks like and what a potential modern data stack using Google products for smaller and medium-sized enterprises can look like, and how they interact with each other.

The Google Data Lifecycle

The Google data lifecycle consists 4 main steps:

  1. Ingest: This step involves capturing raw data from a source such as web and app analytics.
  2. Store: After the raw data has been pulled from a source, it typically needs to be stored in a location and format that is both durable and can be easily accessed.
  3. Process and Analyse: In this step, transformations are done on the stored data to transform them into actionable insights which can then be effectively used by a business.
  4. Explore and visualise: The final step is conducted in order to better understand the results of the processing and analysis we completed in the Process & Analyze step.

Advantages of the Google Cloud Platform

The advantage of Google Cloud Platform (GCP) is that there is a massive number of tools that can be integrated with each other and custom-fit to a business’s requirements.

The even better thing is that as the amount of data increases for a business, Google’s data infrastructure can scale as needed. I mean just look at the number of different tools GCP offers for each step of the data lifecycle.

Graphic of Google's data lifecycle


The Solution

For many smaller and medium-sized businesses starting out, building a complex infrastructure may not be the best solution.

For example, many businesses don’t need their infrastructure to handle billions of hits, and something smaller scale is enough. While these businesses don’t need a data behemoth built, data is still critical to making the correct business decisions.

Below we introduce a modern data stack built on Google’s infrastructure that can handle the data and business requirements for smaller and medium-sized enterprises that are at the start of their data journey, at a fraction of the cost of a full data stack.


While we can keep data in just Google Analytics, it is often a good idea to export Google Analytics data to a data warehouse where more complex analysis can be conducted on the data at a raw, hit-level instead of being aggregated by session-level. And why not just use a Google product to do this? 

BigQuery is Google’s cloud data warehouse product offering designed specifically for allowing users to run highly performance queries against large datasets using SQL.

While Google Analytics Export to BigQuery is only available to Google Analytics 360 clients, Analytics 4 offers free export to BigQuery with no billing charges. You just need to pay for storage and processing of queries if you exceed the free tier usage limits.

Therefore Internetrix recommends you get started with Google Analytics 4 today to take advantage of the built-in Export to BigQuery integration.

Process and Analyse

A good thing about exporting our Google Analytics data to BigQuery, is that BigQuery itself can be used to transform the raw Google Analytics data to usable and actionable data, without having to add any other tool.

Explore and Visualise

Once we have ingested, stored, and transformed our data, we are ready to create some powerful visualisations and insights. Google Data Studio is a great entry-level dashboarding solution and is both easy to use and free.

What’s even better is that it seamlessly connects with a number of different data sources including Google Analytics, Google Analytics 360, Google Ads, BigQuery, and even spreadsheets that may contain data for your business.

To Wrap Things Up

So there we have it. For businesses who are at the start of their data journey, a modern data stack could consist of Google Analytics, Google Tag Manager, Google BigQuery, and Google Data Studio.

As a business scales and grows, additional products from the GCP ecosystem can be added to a business’s data stack to help businesses thrive in the ever-competitive business landscape.

We hope you have found this blog helpful, and as always, if you need any assistance with any step in your data journey, please get in touch to book a call with our Data and Analytics team.

Need to know more?

Get in touch with our expert team to answer any of your questions!

Get in touch!

Share your thoughts

What, no comments yet?

Be the first to leave your thoughts! Ask a question and someone can get back to you about it.

Leave a comment: